Publications

Found 2855 results
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Petzold L, Cao Y.  2004.  An error estimate for matrix equations. APPLIED NUMERICAL MATHEMATICS. 50:395-407.
Petzold L, Drawert B, Trogdon M, Hellander S, Yi T-M.  2016.  A framework for discrete stochastic simulation on 3D moving boundary domains. JOURNAL OF CHEMICAL PHYSICS. 145
Petzold L, Li H, Cao Y.  2004.  Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. JOURNAL OF CHEMICAL PHYSICS. 121:4059-4067.
Petzold LR, Cao Y, Gillespie DT.  2005.  Accelerated stochastic simulation of the stiff enzyme-substrate reaction. JOURNAL OF CHEMICAL PHYSICS. 123
Petzold L, Simeon B, Zheng Z.  2008.  A stabilized explicit Lagrange multiplier based domain decomposition method for parabolic problems. JOURNAL OF COMPUTATIONAL PHYSICS. 227:5272-5285.
Petzold L, Fu J, Li H, Wu S.  2012.  Automatic identification of model reductions for discrete stochastic simulation. JOURNAL OF CHEMICAL PHYSICS. 137
Petzold L, Cohen M, Torshizi ADoostparas.  2017.  Multivariate soft repulsive system identification for constructing rule-based classification systems: Application to trauma clinical data. NEUROCOMPUTING. 245:77-85.
Petzold L, Cao Y.  2008.  Slow-scale tau-leaping method. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. 197:3472-3479.
Petzold LR, Fu J, Li H, Wu S.  2014.  The time dependent propensity function for acceleration of spatial stochastic simulation of reaction-diffusion systems. JOURNAL OF COMPUTATIONAL PHYSICS. 274:524-549.
Petzold LR, Zhu WJ.  1998.  Asymptotic stability of Hessenberg delay differential-algebraic equations of retarded or neutral type. APPLIED NUMERICAL MATHEMATICS. 27:309-325.
Petzold LR, Serban R, Homescu C.  2007.  Error estimation for reduced-order models of dynamical systems. SIAM REVIEW. 49:277-299.
Petzold LR, Cao Y, Gillespie DT.  2005.  Avoiding negative populations in explicit Poisson tau-leaping. JOURNAL OF CHEMICAL PHYSICS. 123
Petzold L, Hellander S, Hellander A.  2015.  Reaction rates for mesoscopic reaction-diffusion kinetics. PHYSICAL REVIEW E. 91
Petzold L, Fu J, Wu S, Cao Y.  2011.  Michaelis-Menten speeds up tau-leaping under a wide range of conditions. JOURNAL OF CHEMICAL PHYSICS. 134
Petzold L, Cohen M, Torshizi ADoostparas.  2015.  Direct Higher Order Fuzzy Rule-based Classification System: Application in Mortality Prediction. IEEE International Conference on Bioinformatics and Biomedicine-BIBM. :846-852.
Petzold LR, Pourzanjani A, Herzog ED.  2015.  On the Inference of Functional Circadian Networks Using Granger Causality. PLOS ONE. 10
Petzold L, Li ST.  2004.  Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement. JOURNAL OF COMPUTATIONAL PHYSICS. 198:310-325.
Petzold L, Zhu WJ.  1999.  Model reduction for chemical kinetics: An optimization approach. AICHE JOURNAL. 45:869-886.
Petzold LR, Cao Y, Gillespie DT.  2005.  The slow-scale stochastic simulation algorithm. JOURNAL OF CHEMICAL PHYSICS. 122
Petzold L, Li ST, Zhu WJ.  2000.  Sensitivity analysis of differential-algebraic equations: A comparison of methods on a special problem. APPLIED NUMERICAL MATHEMATICS. 32:161-174.
Petzold LR, Bales BB, Alkire RC, Bezzola A.  2014.  Numerical Scaling Studies of Kinetically-Limited Electrochemical Nucleation and Growth with Accelerated Stochastic Simulations. JOURNAL OF THE ELECTROCHEMICAL SOCIETY. 161:E3001-E3008.
Petzold LR, Bales BB, Alkire RC, Bezzola A.  2014.  An exact and efficient first passage time algorithm for reaction diffusion processes on a 2D-lattice. JOURNAL OF COMPUTATIONAL PHYSICS. 256:183-197.
Petzold L, Buoni M.  2007.  An efficient, scalable numerical algorithm for the simulation of electrochemical systems on irregular domains. JOURNAL OF COMPUTATIONAL PHYSICS. 225:2320-2332.
Petzold LR, Gillespie DT.  2003.  Improved leap-size selection for accelerated stochastic simulation. JOURNAL OF CHEMICAL PHYSICS. 119:8229-8234.
Petzold L, Cao Y, Li S, Serban R.  2006.  Sensitivity analysis of differential-algebraic equations and partial differential equations. COMPUTERS & CHEMICAL ENGINEERING. 30:1553-1559.

Pages