Found 2855 results
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Zeyen B, Virwani K, Turner KL, Pittenger B.  2009.  Preamplifying cantilevers for dynamic atomic force microscopy. APPLIED PHYSICS LETTERS. 94
Zeyen B., Turner K.L.  2007.  Design and test of a novel higher harmonic imaging AFM probe with a dedicated second cantilever for harmonic amplification.
Zeldovich K.B, Casademunt J., Joanny J.-F, Kafri Y., Campas O..  2006.  Collective dynamics of interacting molecular motors. PHYSICAL REVIEW LETTERS. 97
Zamprogna E, Barolo M, SEBORG DE.  2005.  Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis. JOURNAL OF PROCESS CONTROL. 15:39-52.
Zamprogna E, Barolo M, SEBORG DE.  2001.  Composition estimations in a middle-vessel batch distillation column using artificial neural networks. CHEMICAL ENGINEERING RESEARCH & DESIGN. 79:689-696.
Zamprogna E, Barolo M, SEBORG DE.  2004.  Estimating product composition profiles in batch distillation via partial least squares regression. CONTROL ENGINEERING PRACTICE. 12:917-929.
Zalinescu C, SIMONS S.  2004.  A new proof for Rockafellar's characterization of maximal monotone operators. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. 132:2969-2972.
Zaccarian L, Teel AR.  2004.  Nonlinear scheduled anti-windup design for linear systems. IEEE TRANSACTIONS ON AUTOMATIC CONTROL. 49:2055-2061.
Zaccarian L, Bemporad A, Teel AR.  2004.  Anti-windup synthesis via sampled-data piecewise affine optimal control. AUTOMATICA. 40:549-562.
Zaccarian L, Teel AR.  2002.  A common framework for anti-windup, bumpless transfer and reliable designs. AUTOMATICA. 38:1735-1744.
Zaccarian L, Nesic D, Teel AR.  2005.  L-2 anti-windup for linear dead-time systems. SYSTEMS & CONTROL LETTERS. 54:1205-1217.
Zaccarian L, Grimm G, Teel AR.  2003.  Establishing Lipschitz properties of multivariable algebraic loops with incremental sector nonlinearities. :5667-5672.
Zaccarian L, Morabito F, Teel AR.  2004.  Nonlinear antiwindup applied to Euler-Lagrange systems. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. 20:526-537.
Zaccarian L, Galeani S, Teel AR.  2006.  Nonlinear anti-windup for exponentially unstable linear plants. Systems and Control-Foundations and Applications. :143-+.
Zaccarian L, Grimm G, Teel AR.  2002.  Results on linear LMI-based external anti-windup design. IEEE CONFERENCE ON DECISION AND CONTROL - PROCEEDINGS. :299-304.
Zaccarian L, Galeani S, Teel AR, Barbu C.  2005.  Non-linear anti-windup for manual flight control. INTERNATIONAL JOURNAL OF CONTROL. 78:1111-1129.
Zaccarian L, Grimm G, Turner MC, Postlethwaite I, Teel AR.  2003.  Case studies using linear matrix inequalities for optimal anti-windup synthesis. EUROPEAN JOURNAL OF CONTROL. 9:463-473.
Zaccarian L, Marcinkowski JJ, Teel AR.  2006.  An anti-windup strategy for active vibration isolation systems. CONTROL ENGINEERING PRACTICE. 14:17-27.
Zaccarian L, Hu T, Teel AR.  2005.  Regional anti-windup compensation for linear systems with input saturation. Proceedings of the American Control Conference. :3397-3402.
Zaccarian L, Grimm G, Teel AR.  2004.  Robust linear anti-windup synthesis for recovery of unconstrained performance. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL. 14:1133-1168.
Zaccarian L, Teel AR.  2000.  A benchmark example for anti-windup synthesis in active vibration isolation tasks and an L(2) anti-windup solution. EUROPEAN JOURNAL OF CONTROL. 6:405-420.
Zaccarian L, Reginatto R, Teel AR, Barbu C.  2000.  Anti-windup for exponentially unstable linear systems with inputs limited in magnitude and rate. Proceedings of the American Control Conference. :1230-1234.
Zaccarian L, Teel AR.  2005.  The L(2) (l(2)) bumpless transfer problem for linear plants: Its definition 'and solution. AUTOMATICA. 41:1273-1280.
Zaccarian L, Grimm G, Teel AR.  2002.  Robust LMI-based linear anti-windup design: optimizing the unconstrained response recovery. IEEE CONFERENCE ON DECISION AND CONTROL - PROCEEDINGS. :293-298.
Zaccarian L, Nesic D, Teel AR.  2003.  On finite gain L (P) stability of nonlinear sampled-data systems. SYSTEMS & CONTROL LETTERS. 49:201-212.